login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order.
3

%I #10 May 25 2015 03:44:34

%S 1304296875,1342968750,1437890625,1824609375,9123046875,1923046875,

%T 3104296875,3142968750,3649218750,4137890625,4862109375,1034296875,

%U 1269843750,6349218750,1284609375,1293046875,1347890625,1432968750,8124609375,1629843750,8462109375

%N Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order.

%C If two such numbers A050278(n_1)/5^k_1 and A050278(n_2)/5^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/5^8=a(5)/5^9=4671.

%C There are 46080 such pairs.

%H Chai Wah Wu, <a href="/A257901/b257901.txt">Table of n, a(n) for n = 1..1000</a>

%F min(A050278(n)/5^k) = 1304296875/5^8 = 3339.

%o (Python)

%o from itertools import permutations

%o l = []

%o for d in permutations('0123456789', 10):

%o ....if d[0] != '0':

%o ........d2 = int(''.join(d))

%o ........d = d2

%o ........r = d2 % 5

%o ........while not r:

%o ............d2, r = divmod(d2,5)

%o ........l.append((d2,d))

%o l.sort()

%o A257901_list = [b for a,b in l] # _Chai Wah Wu_, May 24 2015

%Y Cf. A050278, A257893, A257899.

%K nonn,base,fini

%O 1,1

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, May 12 2015