login
A257910
Sequence (a(n)) generated by Rule 3 (in Comments) with a(1) = 0 and d(1) = 3.
4
0, 1, 3, 2, 6, 4, 9, 5, 11, 8, 17, 7, 15, 10, 21, 12, 25, 13, 27, 14, 29, 18, 37, 16, 33, 19, 39, 20, 41, 23, 47, 22, 45, 28, 57, 24, 49, 26, 53, 31, 63, 32, 65, 30, 61, 34, 69, 35, 71, 42, 36, 73, 43, 87, 38, 77, 40, 81, 55, 48, 97, 44, 89, 46, 93, 51, 103
OFFSET
1,3
COMMENTS
Rule 3 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the least such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) - h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
See A257905 for a guide to related sequences and conjectures.
LINKS
EXAMPLE
a(1) = 0, d(1) = 3;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 2;
a(4) = 2, d(4) = -1.
MATHEMATICA
{a, f} = {{0}, {3}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]];
If[! IntegerQ[tmp[[1]]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[[1]]]; AppendTo[f, tmp[[2]]], {120}]; {a, f} (* Peter J. C. Moses, May 14 2015 *)
CROSSREFS
Sequence in context: A365080 A257903 A257877 * A006368 A202845 A202838
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 16 2015
STATUS
approved