login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257907
After 1, the first differences of A257906 (its d-sequence).
4
1, 2, 3, -2, 4, -3, 5, -1, 7, -9, 8, -4, 9, -8, 10, -5, 15, -19, 11, -10, 12, -7, 17, -18, 16, -13, 19, -17, 21, -16, 26, -29, 23, -21, 25, -23, 27, -26, 28, -27, 29, -25, 33, -35, 31, -22, 40, -45, 35, -34, 36, -33, 39, -41, 37, -31, 43, -42, 44, -47, 41
OFFSET
1,2
COMMENTS
This is sequence (d(n)) generated by the following generic rule, "Rule 3" (see below) with parameters a(1) = 0 and d(1) = 1, while A257906 gives the corresponding sequence a(n).
Rule 3 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the least such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) - h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
See A257905 for a guide to related sequences and conjectures.
An informal version of Rule 3 follows: the sequences "d" and "a" are jointly generated, the "driving idea" idea being that each new term of "d" is obtained by a greedy algorithm. See A131388 for a similar procedure (Rule 1).
LINKS
Clark Kimberling (first 1000 terms) & Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 0, d(1) = 1;
a(2) = 2, d(2) = 2;
a(3) = 5, d(3) = 3;
a(4) = 3, d(4) = -2.
MATHEMATICA
{a, f} = {{0}, {1}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]];
If[! IntegerQ[tmp[[1]]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[[1]]]; AppendTo[f, tmp[[2]]], {120}]; {a, f} (* Peter J. C. Moses, May 14 2015 *)
PROG
(Scheme, with memoization-macro definec)
;; Naive quadratic algorithm, but suffices us for now. Needs also code from A257906:
(definec (A257907 n) (cond ((= 1 n) 1) (else (let ((k (- n 1)) (a_k (A257906 (- n 1)))) (let aloop ((h (+ 1 (- 1 a_k)))) (cond ((zero? h) (let bloop ((h 1)) (cond ((and (not_in_range_of? (- a_k h) A257906 k) (not_in_range_of? h A257907 k)) h) (else (bloop (+ 1 h)))))) ((and (not_in_range_of? (+ a_k h) A257906 k) (not_in_range_of? h A257907 k)) h) (else (aloop (+ 1 h)))))))))
(define (not_in_range_of? k fun upto_n) (let loop ((i 1)) (cond ((> i upto_n) #t) ((= (fun i) k) #f) (else (loop (+ i 1))))))
;; Antti Karttunen, May 20 2015
(Haskell)
import Data.List ((\\))
a257907 n = a257907_list !! (n-1)
a257907_list = 1 : f [0] [1] where
f xs@(x:_) ds = g [2 - x .. -1] where
g [] = h : f ((x + h) : xs) (h : ds) where
(h:_) = [z | z <- [1..] \\ ds, x - z `notElem` xs]
g (h:hs) | h `notElem` ds && y `notElem` xs = h : f (y:xs) (h:ds)
| otherwise = g hs
where y = x + h
-- Reinhard Zumkeller, Jun 03 2015
CROSSREFS
After initial 1, the first differences of A257906 (the associated a-sequence for this rule).
Cf. A257905.
Sequence in context: A068962 A036380 A241054 * A139094 A159081 A141285
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, May 16 2015
STATUS
approved