This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257905 Sequence (a(n)) generated by Rule 3 (in Comments) with a(1) = 0 and d(1) = 0. 17
 0, 1, 3, 2, 5, 11, 4, 9, 6, 13, 7, 15, 10, 8, 17, 35, 12, 25, 14, 29, 16, 33, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 30, 26, 53, 24, 49, 40, 28, 57, 27, 55, 31, 63, 32, 65, 38, 42, 34, 69, 36, 73, 48, 97, 44, 89, 46, 93, 51, 103, 52, 105, 50, 101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Rule 3 follows.  For k >= 1, let  A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}.  Begin with k = 1 and nonnegative integers a(1) and d(1). Step 1:   If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the least such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2. Step 2:  Let h be the least positive integer not in D(k) such that a(k) - h is not in A(k).  Let a(k+1) = a(k) + h and d(k+1) = h.  Replace k by k+1 and do Step 1. Conjecture:  suppose that a(1) is an nonnegative integer and d(1) is an integer. If a(1) = 0 and d(1) != 1, then (a(n)) is a permutation of the nonnegative integers; if a(1) = 0 and d(1) = 1, then (a(n)) is a permutation of the nonnegative integers excluding 1; if a(1) = 1, then (a(n)) is a permutation of the positive integers; if a(1) > 1, then (a(n)) is a permutation of the integers >1; if d(1) = 0, then (d(n)) is a permutation of the integers; if d(1) !=0, then (d(n)) is a permutation of the nonzero integers. Guide to related sequences: a(1)  d(1)      (a(n))       (d(n)) 0       0      A257905      A258047 0       1      A257906      A257907 0       2      A257908      A257909 0       3      A257910      A257980 1       0      A258046      A258047 1       1      A257981      A257982 1       2      A257983      A257909 2       0      A257985      A257047 2       1      A257986      A257982 2       2      A257987      A257909 LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A258046(n) - 1 for n >= 1. EXAMPLE a(1) = 0, d(1) = 0; a(2) = 1, d(2) = 1; a(3) = 3, d(3) = 2; a(4) = 2, d(4) = -1. MATHEMATICA {a, f} = {{0}, {0}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]]; If[! IntegerQ[tmp[]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[]]; AppendTo[f, tmp[]], {120}]; {a, f} (* Peter J. C. Moses, May 14 2015 *) PROG (Haskell) import Data.List ((\\)) a257905 n = a257905_list !! (n-1) a257905_list = 0 : f   where    f xs@(x:_) ds = g [2 - x .. -1] where      g [] = y : f (y:xs) (h:ds) where                   y = x + h                   (h:_) = [z | z <- [1..] \\ ds, x - z `notElem` xs]      g (h:hs) | h `notElem` ds && y `notElem` xs = y : f (y:xs) (h:ds)               | otherwise = g hs               where y = x + h -- Reinhard Zumkeller, Jun 03 2015 CROSSREFS Cf. A258047, A257705, A257883, A175498. Cf. A256283 (putative inverse). Sequence in context: A215328 A107298 A195104 * A305878 A093924 A130597 Adjacent sequences:  A257902 A257903 A257904 * A257906 A257907 A257908 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 08:15 EDT 2019. Contains 328051 sequences. (Running on oeis4.)