login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257450
a(n) = 541*(2^n - 1) - 5*n^4 - 30*n^3 - 130*n^2 - 375*n.
2
1, 33, 277, 1335, 4771, 14193, 37417, 90795, 207871, 456693, 974437, 2036655, 4195771, 8558073, 17337697, 34964595, 70300471, 141070653, 282727837, 566179575, 1133243251, 2267556033, 4536394777, 9074315835, 18150434671, 36302985093, 72608437717, 145219736895
OFFSET
1,2
COMMENTS
See the first comment of A257448.
FORMULA
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(-1+x)^5*(-1+2*x).
a(n) = 7*a(n-1) -20*a(n-2) +30*a(n-3) -25*a(n-4) +11*a(n-5) -2*a(n-6) for n>6.
EXAMPLE
This sequence provides the antidiagonal sums of the array:
1, 32, 243, 1024, 3125, 7776, ... A000584
1, 33, 276, 1300, 4425, 12201, ... A000539
1, 34, 310, 1610, 6035, 18236, ... A101092
1, 35, 345, 1955, 7990, 26226, ... A101099
1, 36, 381, 2336, 10326, 36552, ... A254644
1, 37, 418, 2754, 13080, 49632, ... A254682
...
See also A254682 (Example field).
MATHEMATICA
Table[541 (2^n - 1) - 5 n^4 - 30 n^3 - 130 n^2 - 375 n, {n, 30}]
LinearRecurrence[{7, -20, 30, -25, 11, -2}, {1, 33, 277, 1335, 4771, 14193}, 30] (* Harvey P. Dale, Dec 24 2018 *)
PROG
(Magma) [541*(2^n-1)-5*n^4-30*n^3-130*n^2-375*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 23 2015
STATUS
approved