login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257164
Period 5 sequence: repeat [0, 2, 4, 1, 3].
1
0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2
OFFSET
0,2
COMMENTS
Label the vertices of a regular pentagon from 0..4 going clockwise. Then, starting at vertex "0", a(n) gives the order in which the vertices must be connected to draw a clockwise inscribed, 5-pointed star that remains unbroken during construction.
FORMULA
a(n) = (2n mod 5) = A010874(A005843(n)).
G.f.: x*(2+4*x+x^2+3*x^3)/(1-x^5).
Recurrence: a(n) = a(n-5).
a(n) = a(a(a(a(a(n))))).
a(-n) = A010874(3n) = a(a(a(n))).
Bisections: a(2n) = A010874(-n) = a(a(n)); a(2n+1) = A010874(2-n).
Trisections: a(3n) = A010874(n) = a(a(a(a(n)))); a(3n+1) = A010874(n+2); a(3n+2) = A010874(n-1).
EXAMPLE
0 -> 2 -> 4 -> 1 -> 3 -> ..repeat
MAPLE
A257164:=n->(2*n mod 5): seq(A257164(n), n=0..100);
MATHEMATICA
Mod[2 Range[0, 100], 5] (* or *)
CoefficientList[Series[x (2 + 4 x + x^2 + 3 x^3)/(1 - x^5), {x, 0, 100}], x]
LinearRecurrence[{0, 0, 0, 0, 1}, {0, 2, 4, 1, 3}, 105] (* or *)
NestList[# /. {0 -> 2, 1 -> 3, 2 -> 4, 3 -> 0, 4 -> 1} &, {0}, 104] // Flatten (* Robert G. Wilson v, Apr 30 2015 *)
PROG
(Magma) [(2*n mod 5) : n in [0..100]];
(PARI) a(n)=2*n%5 \\ Charles R Greathouse IV, Apr 21 2015
CROSSREFS
Cf. A005843.
Bisection of A010874.
Sequence in context: A050980 A053451 A254076 * A190555 A141843 A322169
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 16 2015
STATUS
approved