OFFSET
0,3
COMMENTS
Number of oddly squarefree (A122132) numbers in each new tier > 2^(n-1). - Travis Scott, Jan 14 2023
a(n) is also the number of even squarefree numbers <= 2^(n+1). - Amiram Eldar, Feb 20 2023
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..73 (terms 0..64 from Amiram Eldar)
FORMULA
EXAMPLE
For n=4 there are 7 odd squarefree numbers <= 2^4, namely 1,3,5,7,11,13,15.
For oddly squarefree we have 2^3 < 10,11,12,13,14,15,16 <= 2^4.
MAPLE
g:= proc(n) option remember; local L ; L := convert(n, base, 2) ; (2*n - add( L[i]*(-1)^i, i=1..nops(L)))/3 ; end proc:
a:= n -> add(numtheory:-mobius(i)*g(floor(2^n/i^2)), i=1..floor(2^(n/2))):
seq(a(n), n=0..32);
MATHEMATICA
A143658[n_] := Sum[MoebiusMu[i] Floor[2^n/i^2], {i, 1, 2^(n/2)}];
a[n_] := Sum[(-1)^j A143658[n-j], {j, 0, n}];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Sep 22 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 13 2015
EXTENSIONS
a(33)-a(35) from Amiram Eldar, Feb 20 2023
STATUS
approved