login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256942
Number of odd squarefree numbers <= 2^n.
1
1, 1, 2, 4, 7, 13, 26, 52, 105, 209, 415, 830, 1661, 3321, 6641, 13279, 26565, 53123, 106237, 212488, 424973, 849945, 1699889, 3399761, 6799540, 13599124, 27198203, 54396423, 108792774, 217585510, 435171212, 870342371, 1740684723, 3481369358, 6962738693, 13925477442
OFFSET
0,3
COMMENTS
Number of oddly squarefree (A122132) numbers in each new tier > 2^(n-1). - Travis Scott, Jan 14 2023
a(n) is also the number of even squarefree numbers <= 2^(n+1). - Amiram Eldar, Feb 20 2023
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..73 (terms 0..64 from Amiram Eldar)
FORMULA
a(n) = Sum_{j=0..n} (-1)^j*A143658(n-j).
a(n) = (2/3) * A143658(n) + (1/3) * Sum_{i=1..floor(2^(n/2))} A008683(i)*A065359(floor(2^n/i^2)).
a(n) + a(n+1) = A143658(n+1).
a(n) ~ 2^(n+2)/Pi^2. - Amiram Eldar, Feb 20 2023
EXAMPLE
For n=4 there are 7 odd squarefree numbers <= 2^4, namely 1,3,5,7,11,13,15.
For oddly squarefree we have 2^3 < 10,11,12,13,14,15,16 <= 2^4.
MAPLE
g:= proc(n) option remember; local L ; L := convert(n, base, 2) ; (2*n - add( L[i]*(-1)^i, i=1..nops(L)))/3 ; end proc:
a:= n -> add(numtheory:-mobius(i)*g(floor(2^n/i^2)), i=1..floor(2^(n/2))):
seq(a(n), n=0..32);
MATHEMATICA
A143658[n_] := Sum[MoebiusMu[i] Floor[2^n/i^2], {i, 1, 2^(n/2)}];
a[n_] := Sum[(-1)^j A143658[n-j], {j, 0, n}];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Sep 22 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 13 2015
EXTENSIONS
a(33)-a(35) from Amiram Eldar, Feb 20 2023
STATUS
approved