login
A265580
Number of (unlabeled) loopless multigraphs with no isolated vertices such that the sum of the numbers of vertices and edges is n.
3
1, 0, 0, 1, 1, 2, 4, 7, 13, 27, 54, 112, 243, 538, 1223, 2875, 6909, 17052, 43138, 111686, 295658, 799684, 2207356, 6213391, 17820961, 52042771, 154640528, 467254731, 1434837672, 4475520062, 14173115724, 45548395180, 148485883443, 490831193397, 1644581336531
OFFSET
0,6
COMMENTS
Also the number of skeletal 2-cliquish graphs with n vertices and no isolated vertices. See Einstein et al. link below.
LINKS
D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp and S. Rubinstein-Salzedo, Noncrossing partitions, toggles, and homomesies, arXiv:1510.06362 [math.CO], 2015.
FORMULA
a(n) = A265581(n) - A265581(n-1), n>=1.
EXAMPLE
For n = 5, the a(5) = 2 such multigraphs are the graph with three vertices and edges from one vertex to each of the other two, and the graph with two vertices connected by three edges.
CROSSREFS
Cf. A265581.
Sequence in context: A256942 A112740 A309050 * A136408 A317718 A357931
KEYWORD
nonn
AUTHOR
Michael Joseph, Dec 10 2015
EXTENSIONS
Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020
STATUS
approved