

A265582


Number of (unlabeled) connected loopless multigraphs such that the sum of the numbers of vertices and edges is n.


2



1, 1, 0, 1, 1, 2, 3, 6, 10, 21, 41, 87, 187, 423, 971, 2324, 5668, 14224, 36506, 95880, 257081, 703616, 1962887, 5578529, 16137942, 47492141, 142093854, 432001458, 1333937382, 4181500703, 13301265585, 42918900353, 140423545125, 465712099790, 1565092655597
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Also the number of connected skeletal 2cliquish graphs with n vertices. See Einstein et al. link below.
a(n) can be computed from A265580 and/or A265581, and partitions of n, by taking all loopless multigraphs (V,E) with V + E = n and subtracting out the disconnected ones.
a(n) <= A265580(n) except when n=1, and a(n) < A265580(n) for n>=6.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..100
D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp and S. RubinsteinSalzedo, Noncrossing partitions, toggles, and homomesies, arXiv:1510.06362 [math.CO], 2015.


FORMULA

From Andrew Howroyd, Feb 01 2020: (Start)
a(n) = Sum_{k=1..ceiling(n/2)} A191646(nk, k) for n > 0.
Inverse Euler transform of A265581. (End)


EXAMPLE

For n = 5, the a(5) = 2 such multigraphs are the graph with three vertices and edges from one vertex to each of the other two, and the graph with two vertices connected by three edges.


PROG

(PARI) \\ See A191646 for G, InvEulerMT.
seq(n)={my(v=InvEulerMT(vector((n+1)\2, k, 1 + y*Ser(G(k, n1), y)))); Vec(1 + sum(i=1, #v, v[i]*y^i) + O(y*y^n))} \\ Andrew Howroyd, Feb 01 2020


CROSSREFS

Cf. A191646, A265580, A265581.
Sequence in context: A002988 A138347 A211180 * A242563 A240513 A036650
Adjacent sequences: A265579 A265580 A265581 * A265583 A265584 A265585


KEYWORD

nonn


AUTHOR

Michael Joseph, Dec 10 2015


EXTENSIONS

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020


STATUS

approved



