login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211180
G.f. satisfies: A(x) = x + A( x^2 + x^2*A(x) ).
1
1, 1, 1, 2, 3, 6, 10, 21, 40, 85, 170, 362, 752, 1618, 3438, 7447, 16065, 35080, 76574, 168424, 370880, 820968, 1820598, 4052594, 9038457, 20216002, 45301380, 101746560, 228918438, 516016266, 1165005168, 2634463663, 5965815375, 13528669545, 30717837778
OFFSET
1,4
LINKS
FORMULA
Given g.f. A(x), define g(x) = x^2*(1 + A(x)); since A(x) = x + A(g(x))
then A(x) equals the sum of all iterations of g(x):
A(x) = x + g(x) + g(g(x)) + g(g(g(x))) + g(g(g(g(x)))) +...
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 10*x^7 + 21*x^8 +...
Define g(x) = x^2*(1 + A(x)) which satisfies: A(g(x)) = A(x) - x,
then the initial iterations of g(x) begin:
g(x) = x^2 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 6*x^8 + 10*x^9 + 21*x^10 +...
g(g(x)) = x^4 + 2*x^5 + 4*x^6 + 7*x^7 + 14*x^8 + 26*x^9 + 52*x^10 +...
g(g(g(x))) = x^8 + 4*x^9 + 12*x^10 + 30*x^11 + 73*x^12 + 170*x^13 +...
g(g(g(g(x)))) = x^16 + 8*x^17 + 40*x^18 + 156*x^19 + 530*x^20 +...
where A(x) = x + g(x) + g(g(x)) + g(g(g(x))) + g(g(g(g(x)))) +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, x^2*(1+A)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 45, print1(a(n), ", "))
CROSSREFS
Sequence in context: A359019 A002988 A138347 * A265582 A242563 A240513
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 11 2012
STATUS
approved