login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256943
Number of Grand Dyck-Motzkin paths of length n.
1
1, 1, 3, 6, 16, 38, 100, 254, 674, 1772, 4760, 12783, 34745, 94692, 260040, 716546, 1984984, 5517179, 15396331, 43094834, 121008580, 340686763, 961686971, 2720893669, 7715273753, 21921047638, 62401862460, 177948692666, 508289340032, 1454107965549
OFFSET
0,3
COMMENTS
A Grand Dyck-Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps U=(1,1), D=(1,-1) and H=(1,0), such that H-steps are only allowed if y<=0.
LINKS
L. Ferrari and E. Munarini, Enumeration of edges in some lattices of paths , arXiv:1203.6792 [math.CO], 2012.
FORMULA
G.f.: 1/(1-x-x^2*C(x^2)-x^2*M(x)), where C(x) is the g.f. of Catalan numbers and M(x) is the g.f. of Motzkin paths.
a(n) ~ (3+sqrt(5)) * 3^(n+3/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 20 2015
EXAMPLE
For instance, for n=3, we have the 6 paths UDH, HUD, HDU, DUH, DHU, HHH.
MATHEMATICA
CoefficientList[Series[2/(Sqrt[1-4*x^2] + Sqrt[1-2*x-3*x^2] - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2015 *)
PROG
(PARI) x='x+O('x^50); Vec(2/(sqrt(1-4*x^2) + sqrt(1-2*x-3*x^2) - x)) \\ G. C. Greubel, Mar 09 2017
CROSSREFS
Cf. A002426.
Sequence in context: A114410 A190735 A096588 * A275207 A073079 A143560
KEYWORD
nonn
AUTHOR
STATUS
approved