login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256321
Number of partitions of 5n into exactly 3 parts.
3
0, 2, 8, 19, 33, 52, 75, 102, 133, 169, 208, 252, 300, 352, 408, 469, 533, 602, 675, 752, 833, 919, 1008, 1102, 1200, 1302, 1408, 1519, 1633, 1752, 1875, 2002, 2133, 2269, 2408, 2552, 2700, 2852, 3008, 3169, 3333, 3502, 3675, 3852, 4033, 4219, 4408, 4602
OFFSET
0,2
FORMULA
a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6) for n>5.
G.f.: -x*(x^2+2*x+2)*(2*x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+x+1)).
EXAMPLE
For n=1 the 2 partitions of 5*1 = 5 are [1, 1, 3] and [1, 2, 2].
MATHEMATICA
Length /@ (Total /@ IntegerPartitions[5 #, {3}] & /@ Range[0, 47]) (* Michael De Vlieger, Mar 24 2015 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 2, 8, 19, 33, 52}, 50] (* Harvey P. Dale, Oct 29 2017 *)
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=5*n, k++, , [3, 3]); k))
(PARI) concat(0, Vec(-x*(x^2+2*x+2)*(2*x^2+2*x+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^100)))
CROSSREFS
Cf. A033428 (6n), A256320 (4n), A256322 (7n).
Sequence in context: A236327 A109071 A196134 * A192136 A031327 A193389
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 24 2015
STATUS
approved