The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256319 Decimal expansion of Sum_{k>=0} (zeta(2k)/(2k+1))*(3/4)^(2k) (negated). 2
0, 7, 6, 0, 9, 9, 8, 2, 7, 1, 2, 9, 7, 1, 3, 4, 0, 0, 6, 4, 1, 5, 1, 3, 2, 1, 1, 5, 4, 1, 7, 4, 5, 8, 3, 5, 7, 3, 0, 8, 5, 2, 9, 8, 2, 2, 6, 1, 4, 5, 1, 3, 9, 0, 1, 0, 9, 8, 3, 6, 1, 4, 6, 0, 0, 2, 7, 6, 5, 8, 5, 9, 8, 6, 5, 6, 1, 0, 7, 2, 4, 9, 9, 2, 5, 9, 0, 2, 2, 3, 6, 4, 8, 0, 5, 9, 9, 8, 5, 5, 8, 2, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
H. M. Srivasata, M. L. Glasser, Victor S. Adamchik, Some Definite Integrals Associated with the Riemann Zeta Function
FORMULA
Equals G/(3*Pi) - log(2)/4, where G is Catalan's constant.
EXAMPLE
-0.0760998271297134006415132115417458357308529822614513901...
MATHEMATICA
Join[{0}, RealDigits[Catalan/(3 Pi) - Log[2]/4, 10, 102] // First]
PROG
(PARI) suminf(k=0, (zeta(2*k)/(2*k+1))*(3/4)^(2*k)) \\ Michel Marcus, Mar 23 2015
(PARI) default(realprecision, 100); Catalan/(3*Pi) - log(2)/4 \\ G. C. Greubel, Aug 25 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/(3*Pi(R)) - Log(2)/4; // G. C. Greubel, Aug 25 2018
CROSSREFS
Sequence in context: A094123 A132799 A154580 * A324688 A334400 A309700
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 14:48 EDT 2024. Contains 373331 sequences. (Running on oeis4.)