OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
a(n) = A184637(n) for n > 2.
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5) for n>4.
G.f.: -x*(x+1)^3 / ((x-1)^3*(x^2+x+1)).
a(n) = 2*(6*n^2+cos((2*Pi*n)/3)-1)/9. - Colin Barker, Jun 06 2016
EXAMPLE
For n=2 the 5 partitions of 4*2 = 8 are [1,1,6], [1,2,5], [1,3,4], [2,2,4] and [2,3,3].
MATHEMATICA
Length /@ (Total /@ IntegerPartitions[4 #, {3}] & /@ Range[0, 49]) (* Michael De Vlieger, Mar 24 2015 *)
CoefficientList[Series[-x (x + 1)^3/((x - 1)^3 (x^2 + x + 1)), {x, 0, 49}], x] (* or *)
Table[2 (6 n^2 + Cos[(2 Pi n)/3] - 1)/9, {n, 0, 49}] (* Michael De Vlieger, Jun 06 2016 *)
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=4*n, k++, , [3, 3]); k))
(PARI) concat(0, Vec(-x*(x+1)^3/((x-1)^3*(x^2+x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 24 2015
STATUS
approved