The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256320 Number of partitions of 4n into exactly 3 parts. 4
0, 1, 5, 12, 21, 33, 48, 65, 85, 108, 133, 161, 192, 225, 261, 300, 341, 385, 432, 481, 533, 588, 645, 705, 768, 833, 901, 972, 1045, 1121, 1200, 1281, 1365, 1452, 1541, 1633, 1728, 1825, 1925, 2028, 2133, 2241, 2352, 2465, 2581, 2700, 2821, 2945, 3072, 3201 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = A184637(n) for n > 2.
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5) for n>4.
G.f.: -x*(x+1)^3 / ((x-1)^3*(x^2+x+1)).
a(n) = 2*(6*n^2+cos((2*Pi*n)/3)-1)/9. - Colin Barker, Jun 06 2016
EXAMPLE
For n=2 the 5 partitions of 4*2 = 8 are [1,1,6], [1,2,5], [1,3,4], [2,2,4] and [2,3,3].
MATHEMATICA
Length /@ (Total /@ IntegerPartitions[4 #, {3}] & /@ Range[0, 49]) (* Michael De Vlieger, Mar 24 2015 *)
CoefficientList[Series[-x (x + 1)^3/((x - 1)^3 (x^2 + x + 1)), {x, 0, 49}], x] (* or *)
Table[2 (6 n^2 + Cos[(2 Pi n)/3] - 1)/9, {n, 0, 49}] (* Michael De Vlieger, Jun 06 2016 *)
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=4*n, k++, , [3, 3]); k))
(PARI) concat(0, Vec(-x*(x+1)^3/((x-1)^3*(x^2+x+1)) + O(x^100)))
CROSSREFS
Cf. A033428 (6n), A256321 (5n), A256322 (7n).
Cf. A184637.
Sequence in context: A028347 A346379 A354399 * A301693 A038794 A225284
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 24 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 13:05 EDT 2024. Contains 373429 sequences. (Running on oeis4.)