login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256323
a(n) = numerator of (1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3))), term of a BBP-type series representation of zeta(3) by V. Adamchik and S. Wagon.
1
31, 97, 113, 39, 3781, 257, 3131, 6791, 6287, 2113, 33193, 787, 5933, 2063, 26827, 16153, 115453, 11351, 53107, 92453, 23677, 3389, 277777, 52421, 118127, 99367, 147971, 82307, 547381, 4199, 24659, 365459, 266719, 72803, 951481, 172303, 373591
OFFSET
1,1
LINKS
Victor Adamchik and Stan Wagon, Pi: A 2000-Year Search Changes Direction
David Bailey, Peter Borwein, Simon Plouffe, On the rapid computation of various polylogarithmic constants
Eric Weisstein's MathWorld, BBP-Type Formula
FORMULA
a(n) = Numerator(1/n^3+1/(n+1)-2/(n+2)-6/(2*n+1)+6/(2*n+3)+1/n). - Peter Luschny, Mar 24 2015
MAPLE
a := n -> numer(1/n^3+1/(n+1)-2/(n+2)-6/(2*n+1)+6/(2*n+3)+1/n):
seq(a(n), n=1..37); # Peter Luschny, Mar 24 2015
MATHEMATICA
a[n_] := Numerator[(1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3)))]; Table[a[n], {n, 1, 40}]
PROG
(Magma) [Numerator((1/n^3)*(-1/(n+1)+16/(n+2)+3/(4*(2*n+1))-81/(4*(2*n+3)))): n in [1..40]]; // Vincenzo Librandi, Mar 24 2015
CROSSREFS
Cf. A002117, A256324 (denominators).
Sequence in context: A044599 A143032 A159014 * A142067 A081275 A139509
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved