login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309700
Digits of the 8-adic integer 7^(1/7).
5
7, 6, 1, 0, 1, 6, 4, 1, 7, 3, 6, 4, 4, 5, 3, 3, 4, 2, 0, 0, 6, 2, 5, 4, 2, 6, 6, 3, 2, 2, 6, 1, 0, 3, 5, 6, 1, 6, 6, 7, 0, 6, 6, 7, 7, 5, 3, 2, 2, 7, 5, 5, 1, 7, 5, 7, 1, 1, 1, 2, 5, 0, 4, 3, 2, 5, 3, 0, 3, 3, 1, 7, 3, 4, 5, 4, 5, 1, 1, 2, 2, 7, 0, 6, 7, 1, 4, 4, 6, 7, 6, 2, 2, 5
OFFSET
0,1
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + b(n-1)^7 - 7 mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n.
PROG
(PARI) N=100; Vecrev(digits(lift((7+O(2^(3*N)))^(1/7)), 8), N)
(Ruby)
def A309700(n)
ary = [7]
a = 7
n.times{|i|
b = (a + a ** 7 - 7) % (8 ** (i + 2))
ary << (b - a) / (8 ** (i + 1))
a = b
}
ary
end
p A309700(100)
CROSSREFS
Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), A309699 (k=6), this sequence (k=8), A225458 (k=10).
Cf. A225445.
Sequence in context: A256319 A324688 A334400 * A353823 A247444 A319331
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 13 2019
STATUS
approved