login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225458
10-adic integer x such that x^9 = 9.
5
9, 8, 2, 1, 2, 9, 8, 0, 2, 7, 6, 9, 1, 4, 4, 8, 0, 3, 4, 5, 3, 6, 1, 1, 9, 4, 4, 9, 6, 7, 2, 0, 3, 1, 3, 2, 4, 9, 5, 0, 4, 9, 4, 0, 0, 9, 4, 7, 4, 6, 6, 3, 3, 6, 5, 1, 7, 2, 1, 9, 9, 0, 9, 0, 5, 1, 4, 9, 6, 5, 5, 5, 1, 2, 7, 7, 0, 2, 0, 6, 2, 2, 2, 6, 1, 5, 9, 5, 0, 1, 8, 0, 6, 8, 1, 2, 3, 6, 7, 1
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + b(n-1)^9 - 9 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 14 2019
EXAMPLE
9^9 == 9 (mod 10).
89^9 == 9 (mod 10^2).
289^9 == 9 (mod 10^3).
1289^9 == 9 (mod 10^4).
21289^9 == 9 (mod 10^5).
921289^9 == 9 (mod 10^6).
PROG
(PARI) n=0; for(i=1, 100, m=9; for(x=0, 9, if(((n+(x*10^(i-1)))^9)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((9+O(2^N))^(1/9), 2^N), Mod((9+O(5^N))^(1/9), 5^N)))), N) \\ Seiichi Manyama, Aug 06 2019
(Ruby)
def A225458(n)
ary = [9]
a = 9
n.times{|i|
b = (a + a ** 9 - 9) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A225458(100) # Seiichi Manyama, Aug 14 2019
CROSSREFS
Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), A309699 (k=6), A309700 (k=8), this sequence (k=10).
Sequence in context: A094135 A021897 A378205 * A092172 A133619 A276499
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 11 2013
STATUS
approved