login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

10-adic integer x such that x^9 = 9.
5

%I #17 Aug 14 2019 08:32:35

%S 9,8,2,1,2,9,8,0,2,7,6,9,1,4,4,8,0,3,4,5,3,6,1,1,9,4,4,9,6,7,2,0,3,1,

%T 3,2,4,9,5,0,4,9,4,0,0,9,4,7,4,6,6,3,3,6,5,1,7,2,1,9,9,0,9,0,5,1,4,9,

%U 6,5,5,5,1,2,7,7,0,2,0,6,2,2,2,6,1,5,9,5,0,1,8,0,6,8,1,2,3,6,7,1

%N 10-adic integer x such that x^9 = 9.

%H Seiichi Manyama, <a href="/A225458/b225458.txt">Table of n, a(n) for n = 0..10000</a>

%F Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + b(n-1)^9 - 9 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - _Seiichi Manyama_, Aug 14 2019

%e 9^9 == 9 (mod 10).

%e 89^9 == 9 (mod 10^2).

%e 289^9 == 9 (mod 10^3).

%e 1289^9 == 9 (mod 10^4).

%e 21289^9 == 9 (mod 10^5).

%e 921289^9 == 9 (mod 10^6).

%o (PARI) n=0;for(i=1,100,m=9;for(x=0,9,if(((n+(x*10^(i-1)))^9)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))

%o (PARI) N=100; Vecrev(digits(lift(chinese(Mod((9+O(2^N))^(1/9), 2^N), Mod((9+O(5^N))^(1/9), 5^N)))), N) \\ _Seiichi Manyama_, Aug 06 2019

%o (Ruby)

%o def A225458(n)

%o ary = [9]

%o a = 9

%o n.times{|i|

%o b = (a + a ** 9 - 9) % (10 ** (i + 2))

%o ary << (b - a) / (10 ** (i + 1))

%o a = b

%o }

%o ary

%o end

%o p A225458(100) # _Seiichi Manyama_, Aug 14 2019

%Y Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), A309699 (k=6), A309700 (k=8), this sequence (k=10).

%K nonn,base

%O 0,1

%A _Aswini Vaidyanathan_, May 11 2013