login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of 5n into exactly 3 parts.
3

%I #10 Oct 29 2017 12:48:07

%S 0,2,8,19,33,52,75,102,133,169,208,252,300,352,408,469,533,602,675,

%T 752,833,919,1008,1102,1200,1302,1408,1519,1633,1752,1875,2002,2133,

%U 2269,2408,2552,2700,2852,3008,3169,3333,3502,3675,3852,4033,4219,4408,4602

%N Number of partitions of 5n into exactly 3 parts.

%H Colin Barker, <a href="/A256321/b256321.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1).

%F a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6) for n>5.

%F G.f.: -x*(x^2+2*x+2)*(2*x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+x+1)).

%e For n=1 the 2 partitions of 5*1 = 5 are [1, 1, 3] and [1, 2, 2].

%t Length /@ (Total /@ IntegerPartitions[5 #, {3}] & /@ Range[0, 47]) (* _Michael De Vlieger_, Mar 24 2015 *)

%t LinearRecurrence[{1,1,0,-1,-1,1},{0,2,8,19,33,52},50] (* _Harvey P. Dale_, Oct 29 2017 *)

%o (PARI) concat(0, vector(40, n, k=0; forpart(p=5*n, k++, , [3,3]); k))

%o (PARI) concat(0, Vec(-x*(x^2+2*x+2)*(2*x^2+2*x+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^100)))

%Y Cf. A033428 (6n), A256320 (4n), A256322 (7n).

%K nonn,easy

%O 0,2

%A _Colin Barker_, Mar 24 2015