OFFSET
0,4
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-1,-2,2,1,-2,2,0,-2,1).
FORMULA
G.f.: -x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)).
EXAMPLE
For n=3 the 5 partitions of 3*3 = 9 are [1,1,1,1,5], [1,1,1,2,4], [1,1,1,3,3], [1,1,2,2,3] and [1,2,2,2,2].
MATHEMATICA
Table[Length[IntegerPartitions[3n, {5}]], {n, 0, 50}] (* Harvey P. Dale, Jul 21 2019 *)
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [5, 5]); k))
(PARI) concat([0, 0], Vec(-x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 23 2015
STATUS
approved