The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256314 Number of partitions of 3n into exactly 5 parts. 3

%I #11 Jul 22 2019 21:32:11

%S 0,0,1,5,13,30,57,101,164,255,377,540,748,1014,1342,1747,2233,2818,

%T 3507,4319,5260,6351,7599,9027,10642,12470,14518,16814,19366,22204,

%U 25337,28796,32591,36756,41301,46262,51649,57501,63829,70673,78045,85987,94512

%N Number of partitions of 3n into exactly 5 parts.

%H Colin Barker, <a href="/A256314/b256314.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,2,-1,-2,2,1,-2,2,0,-2,1).

%F G.f.: -x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)).

%e For n=3 the 5 partitions of 3*3 = 9 are [1,1,1,1,5], [1,1,1,2,4], [1,1,1,3,3], [1,1,2,2,3] and [1,2,2,2,2].

%t Table[Length[IntegerPartitions[3n,{5}]],{n,0,50}] (* _Harvey P. Dale_, Jul 21 2019 *)

%o (PARI) concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [5,5]); k))

%o (PARI) concat([0,0], Vec(-x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))

%Y Cf. A077043, A256313, A256315.

%K nonn,easy

%O 0,4

%A _Colin Barker_, Mar 23 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)