The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256315 Number of partitions of 3n into exactly 6 parts. 5
 0, 0, 1, 3, 11, 26, 58, 110, 199, 331, 532, 811, 1206, 1729, 2432, 3331, 4494, 5942, 7760, 9975, 12692, 15944, 19858, 24473, 29941, 36308, 43752, 52327, 62239, 73551, 86499, 101155, 117788, 136479, 157532, 181038, 207338, 236534, 269005, 304865, 344534 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also the number of partitions of 3*(n-2) into at most 6 parts. - Colin Barker, Apr 01 2015 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2,1,-4,3,3,-4,1,2,-4,1,2,-1). FORMULA G.f.: x^2*(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^6*(x+1)^3*(x^2+1)*(x^4+x^3+x^2+x+1)). EXAMPLE For n=3 the 3 partitions of 3*3 = 9 are [1,1,1,1,1,4], [1,1,1,1,2,3] and [1,1,1,2,2,2]. MATHEMATICA CoefficientList[Series[x^2*(x^8 + x^7 + 4*x^6 + 5*x^5 + 5*x^4 + 5*x^3 + 4*x^2 + x + 1)/((x - 1)^6*(x + 1)^3*(x^2 + 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Feb 22 2017 *) Table[Length@ IntegerPartitions[3 n, {6}], {n, 0, 40}] (* Michael De Vlieger, Feb 22 2017 *) PROG (PARI) concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [6, 6]); k)) (PARI) concat([0, 0], Vec(x^2*(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^6*(x+1)^3*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) CROSSREFS Cf. A077043, A256313, A256314. Sequence in context: A211811 A011942 A220147 * A290513 A101612 A123928 Adjacent sequences: A256312 A256313 A256314 * A256316 A256317 A256318 KEYWORD nonn,easy AUTHOR Colin Barker, Mar 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 14:50 EDT 2024. Contains 372763 sequences. (Running on oeis4.)