The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256313 Number of partitions of 3n into exactly 4 parts. 3
 0, 0, 2, 6, 15, 27, 47, 72, 108, 150, 206, 270, 351, 441, 551, 672, 816, 972, 1154, 1350, 1575, 1815, 2087, 2376, 2700, 3042, 3422, 3822, 4263, 4725, 5231, 5760, 6336, 6936, 7586, 8262, 8991, 9747, 10559, 11400, 12300, 13230, 14222, 15246, 16335, 17457 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1). FORMULA G.f.: x^2*(x^2+2)*(x^2+x+1) / ((x-1)^4*(x+1)^2*(x^2+1)). a(n) = (6*n^3+6*n^2-3*n-5+(3*n+1)*(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/32. - Luce ETIENNE, Feb 17 2017 EXAMPLE For n=3 the 6 partitions of 3*3 = 9 are [1,1,1,6], [1,1,2,5], [1,1,3,4], [1,2,2,4], [1,2,3,3] and [2,2,2,3]. MATHEMATICA LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {0, 0, 2, 6, 15, 27, 47, 72}, 60] (* Harvey P. Dale, Jul 18 2021 *) PROG (PARI) concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [4, 4]); k)) (PARI) concat([0, 0], Vec(x^2*(x^2+2)*(x^2+x+1)/((x-1)^4*(x+1)^2*(x^2+1)) + O(x^100))) CROSSREFS Cf. A077043, A256314, A256315. Sequence in context: A293402 A192691 A360405 * A138621 A163061 A331773 Adjacent sequences: A256310 A256311 A256312 * A256314 A256315 A256316 KEYWORD nonn,easy AUTHOR Colin Barker, Mar 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)