login
A255861
Least m > 0 such that gcd(m^n+11, (m+1)^n+11) > 1, or 0 if there is no such m.
2
1, 0, 1, 2, 1, 23, 1, 19010820161, 1, 7, 1, 360, 1, 41953103, 1, 4, 1, 638386957517954762853, 1, 38884, 1, 2, 1, 2852, 1, 23, 1, 102, 1, 8384, 1, 36556, 1, 33, 1, 37, 1, 336, 1, 2, 1, 1123, 1, 19734, 1, 9, 1, 135356, 1, 399351, 1, 33, 1
OFFSET
0,4
COMMENTS
See A118119, which is the main entry for this class of sequences.
FORMULA
a(2k)=1 for k>=0, because gcd(1^(2k)+11, 2^(2k)+11) = gcd(12, 4^k-1) = 3.
EXAMPLE
For n=1, gcd(m^n+11, (m+1)^n+11) = gcd(m+11, m+12) = 1, therefore a(1)=0.
For n=2, we have gcd(2^2+11, 3^2+11) = gcd(15, 20) = 5, and the pair (m,m+1)=(2,3) is the smallest which yields a GCD > 1, therefore a(2)=2.
MATHEMATICA
A255861[n_] := Module[{m = 1}, While[GCD[m^n + 11, (m + 1)^n + 11] <= 1, m++]; m]; Join[{1, 0}, Table[A255861[n], {n, 2, 6}]] (* Robert Price, Oct 16 2018 *)
PROG
(PARI) a(n, c=11, L=10^7, S=1)={n!=1 && for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1 && return(a))}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 08 2015
EXTENSIONS
a(7)-a(48) from Hiroaki Yamanouchi, Mar 12 2015
a(49)-a(52) from Max Alekseyev, Aug 06 2015
STATUS
approved