OFFSET
0,3
COMMENTS
See A118119, which is the main entry for this class of sequences.
EXAMPLE
For n=0, gcd(m^0+10, (m+1)^0+10) = gcd(11, 11) = 11 for any m > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(m^n+10, (m+1)^n+10) = gcd(m+10, m+11) = 1, therefore a(1)=0.
For n=2, we have gcd(20^2+10, 21^2+10) = gcd(410, 451) = 41, and the pair (m,m+1)=(20,21) is the smallest which yields a GCD > 1, therefore a(2)=20.
MATHEMATICA
A255860[n_] := Module[{m = 1}, While[GCD[m^n + 10, (m + 1)^n + 10] <= 1, m++]; m]; Join[{1, 0}, Table[A255860[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
PROG
(PARI) a(n, c=10, L=10^7, S=1)={n!=1&&for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))}
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
M. F. Hasler, Mar 08 2015
EXTENSIONS
a(13)-a(36) from Hiroaki Yamanouchi, Mar 13 2015
a(37)-a(40) from Max Alekseyev, Aug 06 2015
STATUS
approved