login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200859
a(n) = 2*a(n-1)+3*a(n-2)+5^n for n>1, a(0)=-2, a(1)=1.
2
-2, 1, 21, 170, 1028, 5691, 30091, 155380, 791658, 4002581, 20145761, 101127390, 506832688, 2537750671, 12699515031, 63529860200, 317746156118, 1589021345961, 7945978425901, 39732507217810, 198670381353948, 993375442564451, 4966947820206371, 24834950923184220
OFFSET
0,1
REFERENCES
B. Satyanarayana and K. S. Prasad, Discrete Mathematics and Graph Theory, PHI Learning Pvt. Ltd. (Eastern Economy Edition), 2009, p. 81 (3.1;4)
FORMULA
G.f.: -(2-15*x)/((1+x)*(1-3*x)*(1-5*x)).
a(n) = 7*a(n-1)-7*a(n-1)-15*a(n-3) for n>2, a(0)=-2, a(1)=1, a(2)=21.
a(n) = (50*5^n-81*3^n-17*(-1)^n)/24.
MAPLE
A200859:=n->(50*5^n-81*3^n-17*(-1)^n)/24; seq(A200859(n), n=0..30); # Wesley Ivan Hurt, Dec 26 2013
MATHEMATICA
LinearRecurrence[{7, -7, -15}, {-2, 1, 21}, 24]
nxt[{n_, a_, b_}]:={n+1, b, 2b+3a+5^(n+1)}; NestList[nxt, {1, -2, 1}, 30][[All, 2]] (* Harvey P. Dale, Dec 28 2021 *)
PROG
(Magma) [n le 2 select 3*n-5 else 2*Self(n-1)+3*Self(n-2)+5^(n-1): n in [1..24]];
(PARI) for(n=0, 23, print1((50*5^n-81*3^n-17*(-1)^n)/24", "));
(Maxima) makelist(coeff(taylor(-(2-15*x)/((1+x)*(1-3*x)*(1-5*x)), x, 0, n), x, n), n, 0, 23);
(Sage)
def lr(a0, a1, a2, a3, a4, a5):
x, y, z = a0, a1, a2
while True:
yield x
x, y, z = y, z, a5*x+a4*y+a3*z
A200859 = lr(-2, 1, 21, 7, -7, -15)
print([next(A200859) for n in range(24)]) # Bruno Berselli, May 09 2014
CROSSREFS
Sequence in context: A345760 A213976 A330354 * A127607 A255861 A059360
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Nov 23 2011
STATUS
approved