This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200859 a(n) = 2*a(n-1)+3*a(n-2)+5^n for n>1, a(0)=-2, a(1)=1. 2
 -2, 1, 21, 170, 1028, 5691, 30091, 155380, 791658, 4002581, 20145761, 101127390, 506832688, 2537750671, 12699515031, 63529860200, 317746156118, 1589021345961, 7945978425901, 39732507217810, 198670381353948, 993375442564451, 4966947820206371, 24834950923184220 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES B. Satyanarayana and K. S. Prasad, Discrete Mathematics and Graph Theory, PHI Learning Pvt. Ltd. (Eastern Economy Edition), 2009, p. 81 (3.1;4) LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000. Index entries for linear recurrences with constant coefficients, signature (7,-7,-15). FORMULA G.f.: -(2-15*x)/((1+x)*(1-3*x)*(1-5*x)). a(n) = 7*a(n-1)-7*a(n-1)-15*a(n-3) for n>2, a(0)=-2, a(1)=1, a(2)=21. a(n) = (50*5^n-81*3^n-17*(-1)^n)/24. MAPLE A200859:=n->(50*5^n-81*3^n-17*(-1)^n)/24; seq(A200859(n), n=0..30); # Wesley Ivan Hurt, Dec 26 2013 MATHEMATICA LinearRecurrence[{7, -7, -15}, {-2, 1, 21}, 24] PROG (MAGMA) [n le 2 select 3*n-5 else 2*Self(n-1)+3*Self(n-2)+5^(n-1): n in [1..24]]; (PARI) for(n=0, 23, print1((50*5^n-81*3^n-17*(-1)^n)/24", ")); (Maxima) makelist(coeff(taylor(-(2-15*x)/((1+x)*(1-3*x)*(1-5*x)), x, 0, n), x, n), n, 0, 23); (Sage) def lr(a0, a1, a2, a3, a4, a5):     x, y, z = a0, a1, a2     while true:        yield x        x, y, z = y, z, a5*x+a4*y+a3*z A200859 = lr(-2, 1, 21, 7, -7, -15) print [A200859.next() for n in range(24)] # Bruno Berselli, May 09 2014 CROSSREFS Cf. A016209, A200864. Sequence in context: A051492 A164827 A213976 * A127607 A255861 A059360 Adjacent sequences:  A200856 A200857 A200858 * A200860 A200861 A200862 KEYWORD sign,easy AUTHOR Bruno Berselli, Nov 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:55 EDT 2018. Contains 316500 sequences. (Running on oeis4.)