login
A255439
Decimal expansion of a constant related to A255360.
4
1, 1, 3, 5, 4, 9, 5, 4, 7, 4, 9, 7, 2, 9, 7, 8, 2, 3, 1, 2, 1, 0, 6, 6, 3, 0, 5, 9, 2, 4, 5, 0, 2, 1, 5, 7, 8, 1, 0, 1, 4, 0, 4, 6, 1, 3, 7, 1, 2, 0, 0, 7, 9, 8, 3, 2, 9, 2, 8, 0, 2, 3, 9, 6, 0, 7, 8, 8, 1, 8, 8, 2, 6, 2, 8, 0, 7, 9, 9, 1, 2, 5, 1, 5, 9, 3, 6
OFFSET
2,3
FORMULA
Equals limit n->infinity (Product_{k=0..n} (k^5)!) / (n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36)).
Equals 2^(5/4)*Pi^(5/4)*exp(137/3024 - 5*Zeta'(-5)) * Product_{n>=1} ((n^5)! / stirling(n^5)), where stirling(n^5) = sqrt(2*Pi) * n^(5*n^5 + 5/2) / exp(n^5) is the Stirling approximation of (n^5)! and Zeta'(-5) = A259070. - Vaclav Kotesovec, Apr 20 2016
EXAMPLE
11.354954749729782312106630592450215781014...
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Feb 24 2015
STATUS
approved