login
A255442
a(n) = A255304(2^n-1).
2
1, 5, 15, 51, 153, 477, 1431, 4347, 13041, 39285, 117855, 354051, 1062153, 3187917, 9563751, 28695627, 86086881, 258273765, 774821295, 2324503251, 6973509753, 20920647357, 62761942071, 188286180507, 564858541521, 1694576687445, 5083730062335, 15251193375651, 45753580126953, 137260749946797
OFFSET
0,2
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
G.f.: (1+3*x)*(1-x) / ((1-3*x)*(1-3*x^2)).
From Colin Barker, Feb 04 2017: (Start)
a(n) = 2*3^n - 3^((n-1)/2)/2*(1-(-1)^n+sqrt(3) + (-1)^n*sqrt(3)).
a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3) for n>2.
(End)
MATHEMATICA
A255442[n_] := SeriesCoefficient[(1 + 3*x)*(1 - x)/((1 - 3*x)*(1 - 3*x^2)), {x, 0, n}]; Array[A255442, 30, 0] (* JungHwan Min, Sep 29 2016 *)
A255442L[n_] := CoefficientList[Series[(1 + 3*x)*(1 - x)/((1 - 3*x)*(1 - 3*x^2)), {x, 0, n}], x]; A255442L[29] (* JungHwan Min, Sep 29 2016 *)
PROG
(PARI) Vec((1+3*x)*(1-x) / ((1-3*x)*(1-3*x^2)) + O(x^30)) \\ Colin Barker, Feb 04 2017
CROSSREFS
Cf. A255304.
Sequence in context: A363510 A120825 A199985 * A149576 A149577 A149578
KEYWORD
nonn,easy
AUTHOR
STATUS
approved