login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255344
Product_{k=1..n} k^(k^5).
14
1, 4294967296
OFFSET
1,2
COMMENTS
The next terms: a(3) has 126 digits, a(4) has 743 digits, a(5) has 2927 digits.
In general, product_{k=1..n} k^(k^m) ~ A(m) * n^(B(m+1)/(m+1) + sum_{j=1..n} j^m) * exp(-n^(m+1)/(m+1)^2 + sum_{j=1..m-1} (1/(j+1) * B(j+1) * binomial(m,j) * n^(m-j) * sum_{i=0..j-1} 1/(m-i) )), where A(m) is the generalized Glaisher-Kinkelin constant (see A074962, A243262, A243263, A243264, A243265), and B(n) is the Bernoulli number A027641(n) / A027642(n).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
FORMULA
a(n) ~ A243265 * n^(n^2*(n+1)^2*(2*n^2+2*n-1)/12 + 1/252) / exp(47*n^2/720 - n^4/12 + n^6/36).
MATHEMATICA
Table[Product[k^(k^5), {k, 1, n}], {n, 1, 5}]
PROG
(PARI) a(n)=prod(k=2, n, k^k^5) \\ Charles R Greathouse IV, Sep 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 21 2015
STATUS
approved