login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254667
The nonnegative numbers with 2 instead of 1.
5
0, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62
OFFSET
0,2
COMMENTS
An autosequence of the first kind is a sequence whose main diagonal in the difference table is A000004 = 0's.
This is the case for a(n).
Difference table of a(n):
0, 2, 2, 3, 4, 5, ...
2, 0, 1, 1, 1, 1, ...
-2, 1, 0, 0, 0, 0, ...
3, -1, 0, 0, 0, 0, ...
-4, 1, 0, 0, 0, 0, ...
5, -1, 0, 0, 0, 0, ...
etc.
The inverse binomial transform of a(n) is (-1)^(n+1)*a(n).
0 followed by A000012(n) is not in the OEIS. See A054977.
What is the meaning of a(n)?
Among many others, A015441 is an autosequence of the first kind.
General form for such autosequence.
Starting from the first upper diagonal s0, s1, s2, s3, s4, ...,
the autosequence is
0, s0, s0, s0 + s1, s0 + 2*s1, s0 + 3*s1 + s2, s0 + 4*s1 + 3*s2, ... .
After 0, the corresponding coefficients are A011973(n).
FORMULA
a(n) = (A164558(n) + (-1)^(n+1)*A164555(n))/A027642(n).
a(n) = A063524(n) + A001477(n). - David A. Corneth, Aug 03 2018
G.f.: (2*x - 2*x^2 + x^3) / (1 - x)^2. - Michael Somos, Feb 09 2015
EXAMPLE
G.f. = 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + ...
MATHEMATICA
CoefficientList[Series[(2*x-2*x^2+x^3)/(1-x)^2, {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2018 *)
a[ n_] := n + Boole[n == 1]; (* Michael Somos, Aug 19 2018 *)
Join[{0, 2}, Range[2, 70]] (* Harvey P. Dale, Oct 10 2024 *)
PROG
(PARI) {a(n) = n + (n==1)}; /* Michael Somos, Feb 09 2015 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x-2*x^2+x^3)/(1-x)^2)); // G. C. Greubel, Aug 03 2018
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 04 2015
STATUS
approved