|
|
A253493
|
|
Number of (n+1) X (6+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
|
|
1
|
|
|
19701, 20975, 25715, 37469, 61955, 113573, 224747, 470909, 1034675, 2376533, 5703227, 14285549, 37236995, 100500293, 279108107, 792567389, 2288216915, 6685708853, 19699271387, 58382132429, 173715062435, 518282546213
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>6.
Empirical: a(n) = 49*3^(n-1) + 2730*2^(n-1) + 14306 for n>3.
Conjectures from Colin Barker, Dec 16 2018: (Start)
G.f.: x*(19701 - 97231*x + 116576*x^2 - 4302*x^3 - 5844*x^4 - 288*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 14306 + 1365*2^n + 49*3^(n-1) for n>3.
(End)
|
|
EXAMPLE
|
Some solutions for n=4:
..0..1..0..1..2..0..0....0..1..0..0..2..1..1....0..2..2..2..1..1..1
..2..1..0..1..2..0..0....2..2..0..0..2..1..1....1..2..2..2..1..1..1
..2..1..0..1..2..0..0....2..2..0..0..2..1..1....1..2..2..2..1..1..1
..2..1..0..1..2..0..0....2..2..0..0..2..1..1....0..1..1..1..0..0..0
..2..1..0..1..2..0..1....2..2..0..0..2..1..2....0..1..1..1..0..0..2
|
|
CROSSREFS
|
Column 6 of A253495.
Sequence in context: A321813 A081866 A288885 * A253500 A253454 A237096
Adjacent sequences: A253490 A253491 A253492 * A253494 A253495 A253496
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 02 2015
|
|
STATUS
|
approved
|
|
|
|