|
|
A253496
|
|
Number of (2+1) X (n+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
|
|
1
|
|
|
414, 1377, 3090, 5386, 9679, 20975, 51167, 133311, 362399, 1014975, 2903327, 8429631, 24731039, 73080255, 217017887, 646610751, 1930949279, 5775084735, 17289730847, 51798148671, 155252361119, 465472916415, 1395850418207
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>9.
Empirical: a(n) = 400*3^(n-3) + 271*2^(n-1) + 1423 for n>6.
Empirical g.f.: x*(414 - 1107*x - 618*x^2 - 491*x^3 + 3091*x^4 + 3607*x^5 - 530*x^6 - 1040*x^7 - 480*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - Colin Barker, Dec 16 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0..1..1..0..1....0..2..2..1..1....0..2..2..1..1....1..0..2..0..0
..2..2..1..0..1....2..2..1..0..0....2..1..1..0..0....1..0..2..0..0
..0..0..0..0..2....2..2..1..0..0....2..1..1..0..1....1..0..2..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|