login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253500
Number of (6+1) X (n+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
1
19701, 22236, 29370, 40117, 63550, 113573, 220988, 457436, 995132, 2264924, 5387708, 13382876, 34622012, 92846684, 256535228, 725629916, 2088972092, 6091114844, 17921775548, 53062222556, 157780493372, 470529165404
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>9.
Empirical: a(n) = 400*3^(n-3) + 2682*2^(n-1) + 16940 for n>6.
Empirical g.f.: x*(19701 - 95970*x + 112665*x^2 - 9713*x^3 + 12502*x^4 - 2660*x^5 - 2102*x^6 - 489*x^7 - 54*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - Colin Barker, Dec 16 2018
EXAMPLE
Some solutions for n=4:
..1..2..2..2..2....0..0..0..1..0....0..1..0..0..0....1..1..2..1..2
..2..2..2..2..2....1..1..1..2..1....0..1..0..0..0....1..0..1..0..1
..0..0..0..0..0....0..0..0..1..0....1..2..1..1..1....1..0..1..0..1
..2..2..2..2..2....0..0..0..1..0....0..1..0..0..0....1..0..1..0..1
..2..2..2..2..2....0..0..0..1..0....1..2..1..1..1....1..0..1..0..1
..1..1..1..1..1....0..0..0..1..0....0..1..0..0..0....1..0..1..0..1
..1..1..1..1..1....0..0..0..2..2....0..1..0..0..2....1..0..1..0..2
CROSSREFS
Row 6 of A253495.
Sequence in context: A081866 A288885 A253493 * A253454 A237096 A252206
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2015
STATUS
approved