login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253491
Number of (n+1) X (4+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
1
3639, 5386, 6476, 10477, 19475, 40117, 89339, 211597, 527555, 1373797, 3709259, 10309117, 29295635, 84629077, 247377179, 729117037, 2161327715, 6431941957, 19191749099, 57367099357, 171685007795, 514222448437, 1541002201019
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>6.
Empirical: a(n) = 49*3^(n-1) + 794*2^(n-1) + 2802 for n>3.
Conjectures from Colin Barker, Dec 15 2018: (Start)
G.f.: x*(3639 - 16448*x + 14189*x^2 + 9033*x^3 - 4467*x^4 - 342*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 2802 + 397*2^n + 49*3^(n-1) for n>3.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..0..0....0..2..1..1..2....0..0..1..2..0....1..2..2..2..1
..0..1..1..0..0....1..1..0..0..1....0..0..1..2..0....1..1..1..1..0
..1..2..2..1..1....2..2..1..1..2....0..0..1..2..0....1..1..1..1..0
..0..1..1..0..0....1..1..0..0..1....0..0..1..2..0....1..1..1..1..0
..1..2..2..1..1....2..2..1..1..2....0..0..1..2..1....1..1..1..2..2
CROSSREFS
Column 4 of A253495.
Sequence in context: A207288 A239992 A253498 * A253452 A253464 A015294
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2015
STATUS
approved