login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253490
Number of (n+1) X (3+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
1
1388, 3090, 4196, 6931, 13528, 29370, 68992, 172050, 449608, 1219050, 3400912, 9693570, 28065688, 82170330, 242460832, 719285490, 2141665768, 6392619210, 19113104752, 57209811810, 171370433848, 513593301690, 1539743908672
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>7.
Empirical: a(n) = 49*3^(n-1) + 494*2^(n-1) + 1655 for n>4.
Conjectures from Colin Barker, Dec 15 2018: (Start)
G.f.: x*(1388 - 5238*x + 924*x^2 + 7417*x^3 - 442*x^4 - 733*x^5 - 6*x^6) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 1655 + 247*2^n + 49*3^(n-1) for n>4.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..1..1....1..1..2..2....0..0..0..0....0..0..1..0....1..2..2..1
..0..0..0..0....2..1..1..1....2..2..2..2....1..0..1..0....2..2..2..1
..0..0..0..0....1..0..0..0....2..2..2..2....1..0..1..0....1..1..1..0
..2..2..2..2....1..0..0..0....2..2..2..2....2..1..2..1....1..1..1..0
..0..0..0..1....0..0..1..2....2..2..2..2....1..0..1..2....0..0..0..2
CROSSREFS
Column 3 of A253495.
Sequence in context: A200971 A259722 A253497 * A253451 A281164 A250816
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2015
STATUS
approved