login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253141
If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.
2
1, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Since A253139(n) = Product_{d|n} a(d), A253139 is a divisibility sequence.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
EXAMPLE
2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2.
6 = 2*3 is not a prime power; a(6) = 1.
8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2.
32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
MATHEMATICA
Table[If[PrimePowerQ[n], Exp[MangoldtLambda[DivisorSigma[0, n]]], 1], {n, 1, 100}] (* Indranil Ghosh, Jul 19 2017 *)
PROG
(PARI)
A014963(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ This function from Charles R Greathouse IV, Jun 10 2011
A253141(n) = if(1==omega(n), A014963(numdiv(n)), 1); \\ Antti Karttunen, Jul 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Matthew Vandermast, Dec 27 2014
STATUS
approved