Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 19 2017 20:09:16
%S 1,2,2,3,2,1,2,2,3,1,2,1,2,1,1,5,2,1,2,1,1,1,2,1,3,1,2,1,2,1,2,1,1,1,
%T 1,1,2,1,1,1,2,1,2,1,1,1,2,1,3,1,1,1,2,1,1,1,1,1,2,1,2,1,1,7,1,1,2,1,
%U 1,1,2,1,2,1,1,1,1,1,2,1,5,1,2,1,1,1,1
%N If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.
%C For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Since A253139(n) = Product_{d|n} a(d), A253139 is a divisibility sequence.
%C a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
%H Antti Karttunen, <a href="/A253141/b253141.txt">Table of n, a(n) for n = 1..10000</a>
%H Morgan Ward, <a href="https://doi.org/10.1090/S0002-9904-1939-06980-2">A note on divisibility sequences</a>, Bull. Amer. Math. Soc., 45 (1939), 334-336.
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%e 2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2.
%e 6 = 2*3 is not a prime power; a(6) = 1.
%e 8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2.
%e 32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
%t Table[If[PrimePowerQ[n], Exp[MangoldtLambda[DivisorSigma[0, n]]], 1], {n, 1, 100}] (* _Indranil Ghosh_, Jul 19 2017 *)
%o (PARI)
%o A014963(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ This function from _Charles R Greathouse IV_, Jun 10 2011
%o A253141(n) = if(1==omega(n), A014963(numdiv(n)), 1); \\ _Antti Karttunen_, Jul 19 2017
%Y Cf. A000005, A014963, A253139.
%K nonn,easy
%O 1,2
%A _Matthew Vandermast_, Dec 27 2014