login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253140
Smallest of three consecutive primes in arithmetic progression with common difference 24 and digit sum prime.
4
89, 373, 773, 863, 1279, 2063, 2089, 2399, 2663, 2753, 3299, 4153, 4373, 5879, 6173, 6263, 6779, 7079, 7499, 7853, 9473, 10453, 11399, 12253, 12479, 14699, 16763, 19379, 21163, 21563, 25073, 29363, 32189, 33599, 40063, 41879, 42773, 50053, 50363, 52673, 56453
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 89: 89 + 24 = 113; 113 + 24 = 137; all three are prime. Their digit sums 8+9 = 17, 1+1+3 = 5 and 1+3+7 = 11 are also prime.
a(2) = 373: 373 + 24 = 397; 397 + 24 = 421; all three are prime. Their digit sums 3+7+3 = 13, 3+9+7 = 19 and 4+2+1 = 7 are also prime.
MATHEMATICA
A253140 = {}; Do[d = 24; k = Prime[n]; k1 = k+d; k2 = k+2d; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[Plus@@IntegerDigits[k]] && PrimeQ[Plus@@IntegerDigits[k1]] && PrimeQ[Plus@@IntegerDigits[k2]], AppendTo[A253140, k]], {n, 20000}]; A253140
tcpQ[n_]:=Module[{a=n+24, b=n+48}, AllTrue[{a, b}, PrimeQ]&&AllTrue[Total/@ (IntegerDigits/@{n, a, b}), PrimeQ]]; Select[Prime[Range[6000]], tcpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 16 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Dec 27 2014
STATUS
approved