login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252116
Numbers n such that the pentagonal number P(n) is equal to the sum of the heptagonal numbers H(m), H(m+1) and H(m+2) for some m.
2
1283, 60266, 133006667, 6248482130, 13790397229331, 647855124125114, 1429815965398472795, 67170914973291570338, 148246178910654059084579, 6964414805612961471642122, 15370460320384618188608829803, 722084455808392156329506905586
OFFSET
1,1
COMMENTS
Also nonnegative integers y in the solutions to 15*x^2-3*y^2+21*x+y+16 = 0, the corresponding values of x being A252115.
FORMULA
G.f.: -x*(2*x^4+57*x^3-77605*x^2+58983*x+1283) / ((x-1)*(x^2-322*x+1)*(x^2+322*x+1)).
EXAMPLE
1283 is in the sequence because P(1283) = 2468492 = 819963+822829+825700 = H(573)+H(574)+H(575).
MATHEMATICA
LinearRecurrence[{1, 103682, -103682, -1, 1}, {1283, 60266, 133006667, 6248482130, 13790397229331}, 20] (* Harvey P. Dale, May 08 2020 *)
PROG
(PARI) Vec(-x*(2*x^4+57*x^3-77605*x^2+58983*x+1283)/((x-1)*(x^2-322*x+1)*(x^2+322*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 14 2014
STATUS
approved