

A249539


Decimal expansion of 12/sqrt(Pi), the average perimeter of a random Gaussian triangle in three dimensions.


1



6, 7, 7, 0, 2, 7, 5, 0, 0, 2, 5, 7, 3, 0, 7, 5, 4, 4, 3, 3, 7, 6, 9, 5, 3, 4, 1, 8, 7, 2, 9, 2, 7, 1, 0, 3, 0, 1, 2, 8, 6, 0, 7, 5, 5, 1, 9, 4, 7, 9, 8, 6, 2, 8, 2, 1, 2, 9, 0, 2, 8, 6, 6, 0, 5, 2, 7, 7, 0, 9, 6, 2, 1, 2, 9, 7, 9, 2, 0, 9, 7, 3, 8, 4, 0, 9, 2, 3, 9, 2, 2, 4, 2, 5, 2, 8, 8, 3, 6, 1, 3, 1, 6, 3, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000
Steven R. Finch, Random Triangles, January 21, 2010. [Cached copy, with permission of the author]
Eric Weisstein's MathWorld, Gaussian Triangle Picking


EXAMPLE

6.770275002573075443376953418729271030128607551947986282129...


MATHEMATICA

RealDigits[12/Sqrt[Pi], 10, 105] // First


PROG

(PARI) 12/sqrt(Pi) \\ Charles R Greathouse IV, Apr 20 2016


CROSSREFS

Cf. A102519, A102520, A102558, A102559, A249521 (average side length in three dimensions), A249538 (average perimeter in two dimensions).
Sequence in context: A115096 A132957 A339135 * A139726 A200095 A201753
Adjacent sequences: A249536 A249537 A249538 * A249540 A249541 A249542


KEYWORD

nonn,cons,easy


AUTHOR

JeanFrançois Alcover, Oct 31 2014


STATUS

approved



