login
Decimal expansion of 12/sqrt(Pi), the average perimeter of a random Gaussian triangle in three dimensions.
1

%I #16 Oct 01 2022 14:17:59

%S 6,7,7,0,2,7,5,0,0,2,5,7,3,0,7,5,4,4,3,3,7,6,9,5,3,4,1,8,7,2,9,2,7,1,

%T 0,3,0,1,2,8,6,0,7,5,5,1,9,4,7,9,8,6,2,8,2,1,2,9,0,2,8,6,6,0,5,2,7,7,

%U 0,9,6,2,1,2,9,7,9,2,0,9,7,3,8,4,0,9,2,3,9,2,2,4,2,5,2,8,8,3,6,1,3,1,6,3,4

%N Decimal expansion of 12/sqrt(Pi), the average perimeter of a random Gaussian triangle in three dimensions.

%H G. C. Greubel, <a href="/A249539/b249539.txt">Table of n, a(n) for n = 1..5000</a>

%H Steven R. Finch, <a href="/A102519/a102519.pdf">Random Triangles</a>, Jan 21 2010. [Cached copy, with permission of the author]

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/GaussianTrianglePicking.html">Gaussian Triangle Picking</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 6.770275002573075443376953418729271030128607551947986282129...

%t RealDigits[12/Sqrt[Pi], 10, 105] // First

%o (PARI) 12/sqrt(Pi) \\ _Charles R Greathouse IV_, Apr 20 2016

%Y Cf. A102519, A102520, A102558, A102559, A249521 (average side length in three dimensions), A249538 (average perimeter in two dimensions).

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Oct 31 2014