login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249511
Primes p such that p - 1 and (p + 1)/2 have the same sum of divisors.
1
3, 5519, 116927, 227663, 263759, 297023, 488639, 616079, 1108127, 2973239, 10738223, 24934079, 25803839, 73277879, 95133239, 117864119, 264054383, 265178591, 285400559, 443052479, 634090679, 644512703, 644615399, 688686959, 717336839
OFFSET
1,1
EXAMPLE
3 is in this sequence because sigma(3 - 1) = sigma((3 + 1)/2) and 3 is prime.
MATHEMATICA
Select[Prime[Range[10^4]], DivisorSigma[1, # - 1] == DivisorSigma[1, (# + 1)/2] &] (* Alonso del Arte, Oct 31 2014 *)
PROG
(Magma) [p: p in PrimesInInterval(3, 100000000) | SumOfDivisors(p-1) eq SumOfDivisors((p+1) div 2)];
(PARI) lista(nn) = {forprime(p=3, nn, if (sigma(p-1)==sigma((p+1)/2), print1(p, ", ")); ); } \\ Michel Marcus, Oct 31 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved