login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249625
Primes p such that (p-1)/2 and p+1 have the same sum of divisors.
1
24001, 95881, 205633, 2266177, 3792673, 3850393, 6846241, 7448641, 15498121, 21566497, 25267681, 28987681, 48114841, 57207697, 69805261, 79176001, 90257521, 110360641, 121223761, 129642001, 139752001, 164655793, 166175461, 185983981, 211268881, 264159601
OFFSET
1,1
EXAMPLE
24001 is in this sequence because A000203((24001-1)/2) = A000203(24001+1) = 39312 and 24001 is prime.
MATHEMATICA
Select[Prime[Range[1442*10^4]], DivisorSigma[1, (#-1)/2]==DivisorSigma[ 1, #+1]&] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(Magma) [p: p in PrimesInInterval(3, 100000000) | SumOfDivisors((p-1) div 2) eq SumOfDivisors(p+1)];
(PARI) forprime(p=3, 10^8, if(sigma((p-1)\2)==sigma(p+1), print1(p, ", "))) \\ Colin Barker, Nov 02 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved