login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249512
Expansion of 1/(1-x*sqrt(4*x^2+1)-2*x^2).
0
1, 1, 3, 7, 15, 33, 75, 169, 375, 835, 1875, 4203, 9375, 20931, 46875, 104919, 234375, 523737, 1171875, 2621545, 5859375, 13098001, 29296875, 65523597, 146484375, 327500413, 732421875, 1637918089
OFFSET
0,3
FORMULA
a(n) = sum(k = 1..n, k*4^(n-k)*binomial(n/2,n-k))/n, a(0)=1.
a(n) ~ 3 * 5^(n/2-1). - Vaclav Kotesovec, Oct 31 2014
a(n) = 3 * 5^(n/2-1) if n is even and n>0 else a(n) = ((4^(n-1)* binomial(n/2, n-1)*hypergeometric([2, 1-n],[2-n/2], -1/4))/n). - Peter Luschny, Oct 31 2014
D-finite with recurrence: (-n+1)*a(n) +(-n+2)*a(n-1) +(n+11)*a(n-2) +(n+10)*a(n-3) +20*(n-4)*a(n-4) +20*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
MAPLE
# Using function CompInv from A357588.
1, CompInv(27, n -> simplify(GegenbauerC(n-1, 1-n, 3/2))); # Peter Luschny, Oct 05 2022
MATHEMATICA
CoefficientList[Series[1/(1-x*Sqrt[4*x^2+1]-2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 31 2014 *)
PROG
(Maxima)
a(n) := if n=0 then 1 else sum(k*4^(n-k)*binomial(n/2, n-k), k, 1, n)/n;
(Sage)
def a(n):
if is_odd(n):
return simplify((4^(n-1)*binomial(n/2, n-1)*hypergeometric([2, 1-n], [2-n/2], -1/4))/n)
return 3*5^(n//2-1) if n>0 else 1
[a(n) for n in (0..27)] # Peter Luschny, Oct 31 2014
CROSSREFS
Sequence in context: A363503 A193641 A026701 * A140498 A136029 A225338
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 31 2014
STATUS
approved