login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p - 1 and (p + 1)/2 have the same sum of divisors.
1

%I #17 Sep 08 2022 08:46:10

%S 3,5519,116927,227663,263759,297023,488639,616079,1108127,2973239,

%T 10738223,24934079,25803839,73277879,95133239,117864119,264054383,

%U 265178591,285400559,443052479,634090679,644512703,644615399,688686959,717336839

%N Primes p such that p - 1 and (p + 1)/2 have the same sum of divisors.

%e 3 is in this sequence because sigma(3 - 1) = sigma((3 + 1)/2) and 3 is prime.

%t Select[Prime[Range[10^4]], DivisorSigma[1, # - 1] == DivisorSigma[1, (# + 1)/2] &] (* _Alonso del Arte_, Oct 31 2014 *)

%o (Magma) [p: p in PrimesInInterval(3, 100000000) | SumOfDivisors(p-1) eq SumOfDivisors((p+1) div 2)];

%o (PARI) lista(nn) = {forprime(p=3, nn, if (sigma(p-1)==sigma((p+1)/2), print1(p, ", ")););} \\ _Michel Marcus_, Oct 31 2014

%Y Cf. A000203, A171720, A249625.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Oct 31 2014