login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247318
Decimal expansion of p_2, a probability associated with continuant polynomials.
1
0, 4, 8, 4, 8, 0, 8, 0, 1, 4, 4, 9, 4, 6, 3, 6, 3, 2, 7, 0, 5, 7, 2, 4, 9, 3, 3, 8, 8, 2, 4, 7, 6, 5, 5, 6, 3, 3, 3, 0, 5, 6, 0, 0, 6, 6, 9, 5, 2, 3, 7, 1, 3, 9, 7, 7, 1, 6, 6, 5, 5, 9, 9, 8, 3, 8, 6, 6, 2, 0, 4, 8, 2, 0, 5, 4, 0, 2, 2, 5, 4, 2, 7, 6, 2, 5, 8, 8, 8, 8, 8, 7, 3, 1, 1, 3, 3, 9, 2, 4, 7, 7
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.
FORMULA
p_2 = Sum_{i >= 1}(sum_{j >= 1} 1/((i*j + 1)^2*(i*j + i + 1)^2)).
p_2 = Sum_{n >= 0} (-1)^n*(n + 1)*zeta(n + 4)*(zeta(n + 2) - 1).
EXAMPLE
0.04848080144946363270572493388247655633305600669523713977...
MATHEMATICA
digits = 101; s = NSum[(-1)^n*(n + 1)*Zeta[n + 4]*(Zeta[n + 2] - 1), {n, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; p2 = -5 + 2*Pi^2/3 - 2*Zeta[3] + 2*s; Join[{0}, RealDigits[p2, 10, digits] // First]
CROSSREFS
Sequence in context: A160204 A200392 A195289 * A019838 A155970 A348573
KEYWORD
nonn,cons
AUTHOR
STATUS
approved