login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of p_2, a probability associated with continuant polynomials.
1

%I #11 Dec 02 2024 02:09:43

%S 0,4,8,4,8,0,8,0,1,4,4,9,4,6,3,6,3,2,7,0,5,7,2,4,9,3,3,8,8,2,4,7,6,5,

%T 5,6,3,3,3,0,5,6,0,0,6,6,9,5,2,3,7,1,3,9,7,7,1,6,6,5,5,9,9,8,3,8,6,6,

%U 2,0,4,8,2,0,5,4,0,2,2,5,4,2,7,6,2,5,8,8,8,8,8,7,3,1,1,3,3,9,2,4,7,7

%N Decimal expansion of p_2, a probability associated with continuant polynomials.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Continuant_(mathematics)">Continuant polynomial</a>.

%F p_2 = Sum_{i >= 1}(sum_{j >= 1} 1/((i*j + 1)^2*(i*j + i + 1)^2)).

%F p_2 = Sum_{n >= 0} (-1)^n*(n + 1)*zeta(n + 4)*(zeta(n + 2) - 1).

%e 0.04848080144946363270572493388247655633305600669523713977...

%t digits = 101; s = NSum[(-1)^n*(n + 1)*Zeta[n + 4]*(Zeta[n + 2] - 1), {n, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; p2 = -5 + 2*Pi^2/3 - 2*Zeta[3] + 2*s; Join[{0}, RealDigits[p2, 10, digits] // First]

%Y Cf. A074903, A145426.

%K nonn,cons

%O 0,2

%A _Jean-François Alcover_, Sep 12 2014