login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246954
Expansion of phi(-x) * psi(-x)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
3
1, -4, 5, -4, 8, -8, 5, -12, 8, -4, 16, -12, 9, -12, 8, -12, 16, -16, 8, -16, 17, -8, 24, -8, 8, -28, 16, -12, 16, -20, 13, -24, 24, -8, 16, -16, 16, -28, 24, -12, 32, -16, 13, -28, 8, -20, 32, -32, 8, -20, 24, -16, 40, -16, 16, -32, 25, -20, 24, -24, 24, -28
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x)^2 * psi(x^2) = psi(-x)^4 / psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q)^4 * eta(q^4)^2 / eta(q^2)^3 in powers of q.
Euler transform of period 4 sequence [ -4, -1, -4, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 16 * (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A246953.
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(2*k))^2 / (1 + x^k).
a(n) = (-1)^n * A045834(n). a(2*n) = A213022(n). a(2*n + 1) = - 4 * A045831(n).
EXAMPLE
G.f. = 1 - 4*x + 5*x^2 - 4*x^3 + 8*x^4 - 8*x^5 + 5*x^6 - 12*x^7 + 8*x^8 + ...
G.f. = q - 4*q^5 + 5*q^9 - 4*q^13 + 8*q^17 - 8*q^21 + 5*q^25 - 12*q^29 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 2, 0, x]/(2 x^(1/4)), {x, 0, n}]; Table[a[n], {n, 0, 60}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A)^2 / eta(x^2 + A)^3, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 08 2014
STATUS
approved