login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A246952
Decimal expansion of sigma, a constant appearing in the asymptotic expression of the number a(n) of Carlitz compositions of size n.
0
5, 7, 1, 3, 4, 9, 7, 9, 3, 1, 5, 8, 0, 8, 7, 6, 4, 3, 1, 1, 2, 2, 1, 7, 9, 0, 4, 8, 9, 1, 9, 7, 4, 6, 0, 0, 3, 3, 6, 1, 7, 6, 2, 2, 4, 9, 3, 7, 5, 3, 4, 1, 4, 5, 1, 1, 7, 1, 8, 1, 8, 5, 8, 7, 9, 4, 2, 7, 4, 6, 2, 8, 6, 5, 6, 8, 6, 6, 8, 9, 8, 8, 7, 3, 8, 4, 8, 5, 3, 0, 9, 7, 1, 9, 3, 4, 3, 7, 5, 7, 6, 3, 5
OFFSET
0,1
LINKS
A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
FORMULA
Sigma is the unique solution of the equation F(x)=1, 0 <= x <= 1, where F(x) = sum_{j>=1} (-1)^(j - 1)*(x^j/(1 - x^j)).
a(n) ~ 1/(sigma*F'(sigma))*(1/sigma)^n = c*r^n, where c = 0.456387... and r = A241902 = 1.750243...
EXAMPLE
0.571349793158087643112217904891974600336176224937534145...
MATHEMATICA
digits = 103; F[x_?NumericQ] := NSum[(-1)^(j - 1)*(x^j/(1 - x^j)), {j, 1, Infinity}, WorkingPrecision -> digits+5]; sigma = x /. FindRoot[F[x] == 1, {x, 2/5, 1/2}, WorkingPrecision -> digits+5]; RealDigits[sigma, 10, digits] // First
CROSSREFS
Sequence in context: A195300 A019697 A217173 * A323386 A021179 A153613
KEYWORD
nonn,cons
AUTHOR
STATUS
approved