login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232635
Expansion of psi(x) * phi(x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
1
1, 1, 4, 5, 4, 8, 1, 4, 8, 4, 13, 12, 4, 8, 8, 1, 12, 8, 8, 12, 16, 13, 4, 16, 4, 12, 20, 8, 5, 12, 12, 12, 16, 8, 8, 20, 17, 16, 16, 8, 20, 24, 8, 8, 16, 1, 24, 16, 8, 12, 20, 16, 12, 28, 12, 33, 20, 8, 16, 12, 16, 20, 24, 8, 16, 32, 1, 12, 32, 8, 16, 32, 8
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Theta function of cubic lattice with respect to point (1/4, 0, 0).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^4)^10 / (eta(q) * eta(q^2)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [ 1, 3, 1, -7, 1, 3, 1, -3, ...].
a(3*n + 2) = 4 * A213023(n).
EXAMPLE
G.f. = 1 + x + 4*x^2 + 5*x^3 + 4*x^4 + 8*x^5 + x^6 + 4*x^7 + 8*x^8 + 4*x^9 + ...
G.f. = q + q^9 + 4*q^17 + 5*q^25 + 4*q^33 + 8*q^41 + q^49 + 4*q^57 + 8*q^65 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q^4]^10 / (QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^8]^4), {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^10 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^4), n))}
CROSSREFS
Cf. A213023.
Sequence in context: A248671 A378211 A343442 * A201296 A350089 A246954
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 27 2013
STATUS
approved